A Fisica Quantica

 Almir Caldeira


O que é, e para que serve 

Já faz cem anos que Planck teve de lançar mão de uma expressão inusitada para explicar os seus resultados da medida da intensidade da radiação emitida por um radiador ideal - o corpo negro - levando-o assim a estabelecer o valor de uma nova constante universal que ficou conhecida como a constante de Planck. A partir daí, e também em função de outras experiências que apresentavam resultados igualmente surpreendentes no contexto da mecânica de Newton e do eletromagnetismo de Maxwell, os pesquisadores do começo do século passado se viram obrigados a formular hipóteses revolucionárias que culminaram com a elaboração de uma nova física capaz de descrever os estranhos fenômenos que ocorriam na escala atômica; a mecânica quântica. 

Esta teoria, com a sua nova conceituação sobre a matéria e os seus intrigantes postulados, gerou debates não só no âmbito das ciências exatas mas também no da filosofia, provocando assim uma grande revolução intelectual no século XX. Obviamente que, além das discussões sérias e conceitualmente sólidas, as características não cotidianas dos fenômenos quânticos levaram muitos pesquisadores, e também leigos, a formular interpretações equivocadas da nova teoria, o que infelizmente, ainda nos nossos dias, atrai a atenção das pessoas menos informadas. 

Mas, no final das contas, quais são estes efeitos tão estranhos dos quais estamos falando e qual é a sua relevância para o nosso cotidiano, se existe alguma? Bem, para provar que não estamos falando de coisas inúteis, comecemos pela segunda parte desta pergunta. 

O leitor certamente se surpreenderia se disséssemos que sem a mecânica quântica não conheceríamos inúmeros objetos com os quais lidamos corriqueiramante hoje em dia. Só para se ter uma idéia podemos mencionar o nosso aparelho de CD, o controle remoto de nossas TVs, os aparelhos de ressonância magnética em hospitais ou até mesmo o micro-computador que ora usamos na elaboração deste artigo. Todos os dispositivos eletrônicos usados nos equipamentos da chamada high-tech só puderam ser projetados porque conhecemos a mecânica quântica. A título de informação, 30% do PIB americano é devido a estas tecnologias. 

Esperando ter convencido o leitor de que estamos longe do terreno da especulação, vamos, então, abordar a primeira parte da pergunta acima lançada. 

O que é a mecânica quântica? 

A mecânica quântica é a teoria que descreve o comportamento da matéria na escala do "muito pequeno", ou seja, é a física dos componentes da matéria; átomos, moléculas e núcleos, que por sua vez são compostos pelas partículas elementares. 

Muito interessante mas…o que isto nos traz de novo? 

A fim de podermos apreciar as novidades que a física quântica pode nos proporcionar, vamos estabelecer alguns conceitos clássicos que nos serão muito úteis adiante. 

O primeiro conceito é o de partícula. Para nós este termo significa um objeto que possui massa e é extremamente pequeno, como uma minúscula bolinha de gude. Podemos imaginar que os corpos grandes sejam compostos de um número imenso destas partículas. Este é um conceito com o qual estamos bem acostumados porque lidamos diariamente com objetos dotados de massa e que ocupam uma certa região do espaço. 

O segundo conceito é o de onda. Este, apesar de ser também observado no nosso dia a dia, escapa à atenção de muitos de nós. Um exemplo bem simples do movimento ondulatório é o das oscilações da superfície da água de uma piscina. Se mexermos sistematicamente a nossa mão sobre esta superfície, observaremos uma ondulação se afastando, igualmente em todas as direções, do ponto onde a superfície foi perturbada. O caso particular aqui mencionado é o de onda material, ou seja, aquela que precisa de um meio material para se propagar (a água da piscina no nosso caso). 

Entretanto, esse não é o caso geral. 

Há ondas que não precisam de meios materiais para a sua propagação, como é o caso da radiação eletromagnética. Aqui, a energia emitida por cargas elétricas aceleradas se propaga no espaço vazio (o vácuo) como as ondas na superfície da piscina. 

Apesar da sua origem mais sutil, a radiação eletromagnética está também presente na nossa experiência diária. 

Dependendo da sua frequência ela é conhecida como: onda de rádio, FM, radiação infravermelha, luz visível, raios-X e muito mais. Pois bem, até o final do século XIX tudo o que era partícula tinha o seu movimento descrito pela mecânica newtoniana enquanto que a radiação eletromagnética era descrita pelas equações de Maxwell do eletromagnetismo. 

O que ocorreu no primeiro quarto do século XX foi que um determinado conjunto de experiências apresentou resultados conflitantes com essa distinção entre os comportamentos de onda e de partícula. 

Estes resultados podem ser resumidos em uma única experiência que passamos a descrever, em seguida, na sua versão clássica. Imagine que uma onda, material ou não, incida sobre um anteparo opaco onde haja duas fendas (ver figura abaixo). Cada uma das fendas passa então a ser fonte de um novo movimento ondulatório. 

Uma característica fundamental deste movimento é o fenômeno de interferência, que reflete o fato das oscilações provenientes de cada uma das fendas poderem ser somadas ou subtraídas uma da outra. Colocando-se agora um segundo anteparo, distante do primeiro, onde iremos detetar a intensidade da onda que o atinge, observaremos como resultado uma figura que alterna franjas com máximos e mínimos da intensidade da onda.

Esta é a chamada figura de interferência. 

     arranjo experimental -  visão frontal       do segundo anteparo 


Vamos agora repetir a mesma experiência com a diferença que, ao invés de ondas, incidimos partículas sobre o primeiro anteparo. O que ocorre nesta nova situação é a presença de duas concentrações distintas de partículas atingindo o segundo anteparo. Aquelas que passam por uma ou outra fenda, como mostra a figura abaixo.

Este seria, portanto, o resultado esperado pela física clássica. Entretanto, quando esta experiência é feita com partículas como elétrons ou nêutrons, ocorre o inesperado: forma-se no segundo anteparo uma figura de interferência na concentração de partículas que a atingem, como mostramos em seguida. 

 

 Ainda mais estranho é a repetição desta mesma experiência com apenas uma partícula. Ela passa pelo primeiro anteparo e atinge o segundo em apenas um ponto. Vamos, então, repetir esta mesma experiência um número enorme de vezes. O resultado é que em cada experimento o ponto de deteção no segundo anteparo é diferente. Entretanto, sobrepondo todos os resultados obtidos nos segundos anteparos de cada experiência obtém-se, novamente, a mesma figura de interferência da figura anterior!

Amir O. Caldeira é professor do Instituto de Física Gleb Wataghin da Unicamp.

Nenhum comentário:

Postar um comentário