A fronteira do conhecimento

 O universo elegante - Brian Greene


1. Vibrando com as cordas 


Chamá-la de tentativa de abafar a verdade seria muito dramático. Porém, por mais de meio século — mesmo em meio às maiores conquistas científicas da história — os físicos conviveram em silêncio com a ameaça de uma nuvem escura no horizonte. O problema é o seguinte: a física moderna repousa em dois pilares. Um é a relatividade geral de Albert Einstein, que fornece a estrutura teórica para a compreensão do universo nas maiores escalas: estrelas, galáxias, aglomerados de galáxias, até além da imensa extensão total do cosmos. O outro é a mecânica quântica, que fornece a estrutura teórica para a compreensão do universo nas menores escalas: moléculas, átomos, descendo até as partículas subatômicas, como elétrons e quarks. Depois de anos de pesquisa, os cientistas já confirmaram experimentalmente, e com precisão quase inimaginável, praticamente todas as previsões feitas por essas duas teorias. 

Mas esses mesmos instrumentos teóricos levam de forma inexorável a uma outra conclusão perturbadora: tal como atualmente formuladas, a relatividade geral e a mecânica quântica não podem estar certas ao mesmo tempo. As duas teorias que propiciaram o fabuloso progresso da física nos últimos cem anos — progresso que explicou a expansão do espaço e a estrutura fundamental da matéria — são mutuamente incompatíveis. 

Se você ainda não ouviu falar dessa feroz controvérsia, deve estar perguntando qual a razão dela. A resposta não é difícil. Em praticamente todos os casos, com exceção dos mais extremos, os físicos estudam coisas que ou são pequenas e leves (como os átomos e as partículas que os constituem) ou enormes e pesadas (como as estrelas e as galáxias), mas não ambos os tipos de coisas ao mesmo tempo. Isso significa que eles só necessitam utilizar ou a mecânica quântica ou a relatividade geral, e podem desprezar sem maiores preocupações as advertências do outro lado. Esta atitude pode não trazer tanta felicidade quanto a ignorância, mas anda perto. 

Porém o universo está cheio de casos extremos. Nas profundezas do interior de um buraco negro uma massa enorme fica comprimida a ponto de ocupar um espaço minúsculo. No momento do big-bang, o universo inteiro emergiu de uma pepita microscópica, perto da qual um grão de areia é algo colossal. Esses são mundos mínimos mas incrivelmente densos, que por isso requerem o emprego tanto da mecânica quântica quanto da relatividade geral. Por motivos que ficarão mais claros à medida que avançarmos, as equações da relatividade geral e da mecânica quântica, quando combinadas, começam a ratear, trepidar e fumegar, como um carro velho. Falando de maneira menos figurativa, quando se juntam as duas teorias, os problemas físicos, ainda que bem formulados, provocam respostas sem sentido. Mesmo que nos resignemos a deixar envoltas em mistério questões difíceis como o que ocorre no interior dos buracos negros ou como se deu a origem do universo, não se pode evitar a sensação de que a hostilidade entre a mecânica quântica e a relatividade geral clama por um nível de entendimento mais profundo. 

Será verdade que o universo, no seu nível mais fundamental, apresenta-se dividido, requerendo um conjunto de regras para as coisas grandes e outro, diferente e incompatível, para as coisas pequenas? 

A teoria das supercordas, uma criança em comparação com as veneráveis teorias da mecânica quântica e da relatividade geral, responde a essa pergunta com um sonoro não. Pesquisas intensas de físicos e matemáticos em todo o mundo revelaram, na última década, que essa nova maneira de descrever a matéria no nível mais fundamental resolve a tensão entre a relatividade geral e a mecânica quântica. Na verdade, a teoria das supercordas revela ainda mais: a relatividade geral e a mecânica quântica precisam uma da outra para que a teoria faça sentido. De acordo com a teoria das supercordas, o casamento entre as leis do grande e do pequeno não só é feliz como também inevitável. 

Essa é uma boa notícia. Mas a teoria das supercordas — ou simplesmente teoria das cordas — leva essa união muito mais adiante. Durante trinta anos Einstein buscou uma teoria unificada da física que entrelaçasse todas as forças e todos os componentes materiais da natureza em um único conjunto de teorias. Ele fracassou. Agora, ao iniciar-se o novo milênio, os proponentes da teoria das cordas proclamam que os fios dessa difícil obra de tecelagem já foram identificados. A teoria das cordas tem a capacidade potencial de demonstrar que todos os formidáveis acontecimentos do universo — da dança frenética dos quarks à valsa elegante das estrelas binárias, da bola de fogo do big-bang ao deslizar majestoso das galáxias — são reflexos de um grande princípio físico, uma equação universal. 

Como esses aspectos da teoria das cordas requerem uma mudança drástica nos nossos conceitos de espaço, tempo e matéria, é necessário deixar passar algum tempo para que nos acostumemos a essas transformações. Mas logo ficará claro que, vista no contexto correto, a teoria das cordas é uma conseqüência natural, ainda que extraordinária, das descobertas revolucionárias da física nos últimos cem anos. Veremos que o conflito entre a relatividade geral e a mecânica quântica na verdade não é o primeiro, mas sim o terceiro de uma série de choques cruciais ocorridos no século XX, confrontos cujos resultados provocaram revisões estonteantes na nossa visão do universo. 
 

Nenhum comentário:

Postar um comentário