O universo microscopico

 O universo elegante - Brian Greene


Durante algum tempo os físicos acreditaram que os prótonsnêutrons e elétrons fossem os verdadeiros "átomos" dos gregos. 

Mas, em 1968, experiências de alta tecnologia feitas no Stanford Linear Accelerator Center (Centro do Acelerador Linear de Stanford) para pesquisar as profundezas microscópicas da matéria revelaram que os prótons e nêutrons tampouco são "indivisíveis". Descobriu-se que eles são formados por três partículas menores chamadas quarks — nome imaginativo, tirado de uma passagem de Finnegans Wake, de James Joyce, e dado pelo físico teórico Murray Gell-Mann, que anteriormente já propusera a sua existência. 

As experiências confirmaram ainda que os quarks apresentam-se em duas variedades, que receberam os nomes, algo menos criativos, de up e down

Um próton consiste de dois quarks up e um down; um nêutron consiste de um quark up e dois down

Tudo o que se vê no mundo terrestre e na abóbada celeste parece ser feito de combinações de elétrons, quarks up e quarks down

Não existe nenhuma indicação experimental de que qualquer uma dessas três partículas seja formada por algo ainda menor. Mas muitas experiências indicam que o universo conta também com outras partículas de matéria. 

Em meados da década de 50, Frederick Reines e Clyde Cowan comprovaram experimentalmente a existência de uma quarta espécie de partícula fundamental, chamada neutrino — cuja existência já fora prevista por Wolfgang Pauli no início dos anos 30. É extremamente difícil detectar um neutrino, partícula fantasma que só muito raramente interage com qualquer outra espécie de matéria: um neutrino com nível normal de energia pode atravessar com facilidade um bloco de chumbo com a espessura de muitos trilhões de quilômetros sem experimentar a menor perturbação em seu movimento. 

Você pode sentir-se muito aliviado com isso, porque agora mesmo, enquanto está lendo esta frase, bilhões de neutrinos lançados ao espaço pelo Sol estão atravessando o seu corpo, assim como toda a Terra, em suas longas e solitárias viagens através do cosmos. 

No final dos anos 30, outra partícula, chamada múon — idêntica ao elétron, exceto por ser cerca de duzentas vezes mais pesada — foi descoberta por físicos que estudavam os raios cósmicos (chuvas de partículas que bombardeiam a Terra do espaço exterior). Como não havia nada na ordem cósmica que demandasse a existência do múon, nenhum enigma por resolver, nenhuma área específica que pudesse ser por ele explicada, Isidor Isaac Rabi, físico de partículas ganhador do premio Nobel, saudou a descoberta do múon com muito pouco entusiasmo: "Quem foi que encomendou isto?", ele perguntou. 

Mas lá estava o múon. E ainda viria mais. 

Os físicos continuaram a provocar choques entre partículas, usando tecnologias cada vez mais poderosas e níveis de energia cada vez mais altos, recriando, por um momento, condições que nunca mais ocorreram depois do big-bang. Entre os traços deixados pêlos estilhaços dessas colisões, eles procuravam outros componentes fundamentais, que se iam somando a uma lista sempre crescente de partículas.

Eis o que eles encontraram: mais quatro quarks — charm, strange, bottom e top — e outro primo do elétron, ainda mais pesado, chamado tau, assim como duas partículas com propriedades similares às do neutrino (chamadas neutrino do múon e neutrino do tau, para distingui-las do neutrino original, que passou a chamar-se neutrino do elétron). 

Essas partículas são produzidas em colisões a altas energias e sua existência é efêmera; elas não são componentes de nada que possamos encontrar normalmente. 

Mas a história ainda não terminou. 

Cada uma dessas partículas tem uma antiparticula que lhe corresponde como par — com igual massa, mas oposta a ela em outros aspectos, como a carga elétrica (assim como as cargas relativas a outras forças que discutiremos abaixo). A antiparticula do elétron, por exemplo, chama-se pósitron — tem exatamente a mesma massa do elétron, mas a sua carga elétrica é +1, enquanto a carga elétrica do elétron é -1. Quando entram em contato, a matéria e a antimatéria podem aniquilar-se mutuamente, produzindo energia pura — e é por isso que há tão pouca antimatéria ocorrendo naturalmente no mundo à nossa volta.

Nenhum comentário:

Postar um comentário